On Injectivity of Quasiregular Mappings
نویسنده
چکیده
We give sufficient conditions for a planar quasiregular mapping to be injective in terms of the range of the differential matrix.
منابع مشابه
Examples of Uniformly Quasiregular Mappings
In this paper we construct examples of uniformly quasiregular (uqr) mappings. These provide counterexamples for a rigidity conjecture in quasiregular dynamics. It states that a closed manifold of dimension at least three, which admits a branched uqr mapping, is quasiconformally equivalent to an ordinary sphere Sn. 1. Statements and results In this paper we construct examples of a certain type o...
متن کاملUniformly Quasiregular Maps with Toroidal Julia Sets
The iterates of a uniformly quasiregular map acting on a Riemannian manifold are quasiregular with a uniform bound on the dilatation. There is a Fatou-Julia type theory associated with the dynamical system obtained by iterating these mappings. We construct the first examples of uniformly quasiregular mappings that have a 2-torus as the Julia set. The spaces supporting this type of mappings incl...
متن کاملSingularities of quasiregular mappings on Carnot groups
In 1970 Poletskĭı applied the method of the module of a family of curves to describe behavior of quasiregular mappings (in another terminology mappings with bounded distortion) in Rn. In the present paper we generalize a result by Poletskĭı and study a singular set of a quasiregular mapping using the method of the module of a families of curves on Carnot groups.
متن کاملHausdorff Measure of the Singular Set of Quasiregular Maps on Carnot Groups
Recently, the theory of quasiregular mappings on Carnot groups has been developed intensively. Let ν stand for the homogeneous dimension of a Carnot group and let m be the index of the last vector space of the corresponding Lie algebra. We prove that the (ν −m− 1)-dimensional Hausdorff measure of the image of the branch set of a quasiregular mapping on the Carnot group is positive. Some estimat...
متن کاملUniformly Quasiregular Mappings of Lattès Type
Using an analogy of the Lattès’ construction of chaotic rational functions, we show that there are uniformly quasiregular mappings of the nsphere R whose Julia set is the whole sphere. Moreover there are analogues of power mappings, uniformly quasiregular mappings whose Julia set is Sn−1 and its complement in Sn consists of two superattracting basins. In the chaotic case we study the invariant ...
متن کامل